Experience of Degradation of Mooring Systems used in the

Mooring Inspections - Worldwide

20 Years experience in the United Kingdom, Norway, Canada, Gulf of Mexico, West Africa, Australia, South East Asia, and India.

Welaptega Global Projects

Agents:

IEV Group

Accpron

Beijing Safetech

GCA Energy

Our Valued Clients

Welaptega operates globally with clients and projects in just about every region of the offshore oil and gas industry.

Problems:


- Mooring components:
 - Equipment failing prematurely
 - Galvanized shackles corroded/worn within weeks vs months/years in other environments
- Power Cables:
 - Armour wires worn away and eventually break
 - Characterized by armour wires forming sharp points; always shiny/bright

Mooring Component Failure

- Galvanized shackles corroded/worn prematurely.
- Obviously a combination corrosion and wear. But which is dominant?

Det Norske Veritas

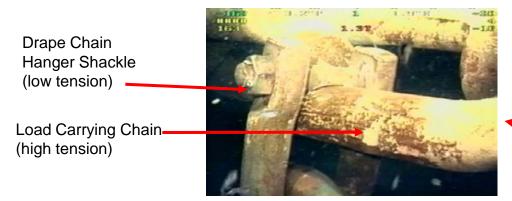
Wear

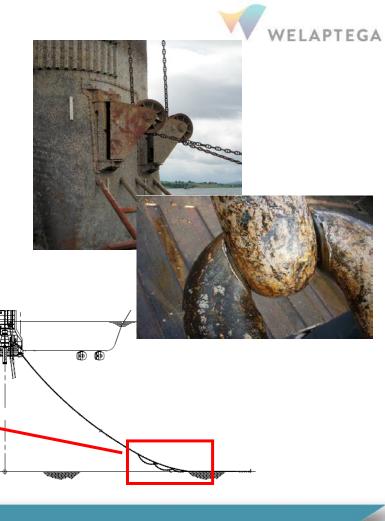
Wear between components expressed by Archard Equation:

- Wear (Volume) = K x Work Done
- Work Done = Frictional Force x Distance Travelled

• K is a function of:

Contact Pressure Surface Hardness

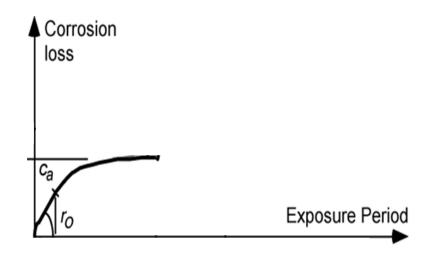

Lubrication Ambient Temperature


Surface Roughness Rate of Dissipation of Frictional Heat

Sliding Velocity Elastic and Shear Moduli

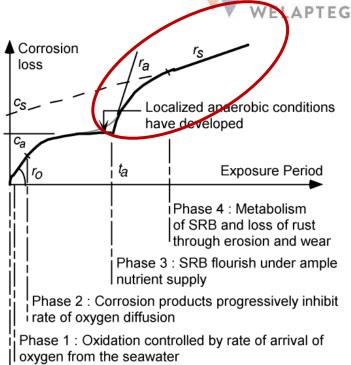
Wear

- Wear rate highest where there high tension and relative motion; relative motion dominates
- Reduce relative motion → reduce the wear
- However, it's unlikely that any of these factors are unique to the Minas Passage



Corrosion

- High initial rate of corrosion (ro), slowing to a lower steady-state rate as oxide layers accumulate to reduce oxygen diffusion to steel surface
- Major contributors to corrosion rate:
 - Dissolved oxygen content
 - Water temperature
 - Flow rate, water velocity
 - Significant impact on corrosion rate in early stage of exposure to sea water (r_o)
 - Once oxide layers formed, flow rate is insignificant on steady state corrosion rate


Multiphase Aerobic-Anaerobic (Biological) Corrosion

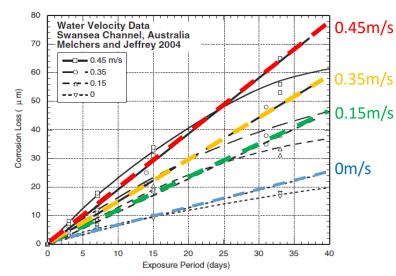
- Microbes (especially Sulfate Reducing Bacteria) do not attack the steel – metabolic by-products create a corrosive environment
- Oxide layers and biofilm must eliminate oxygen diffusion (anaerobic condition)
- Very aggressive corrosion rates in warm water especially under ample supply of nutrients – nitrogen

Phase 0 : Steel surface colonized by bacteria etc.

Robert E. Melchers Development of new applied models for steel

corrosion in marine applications including shipping

What's unique about the Bay Of Fundy

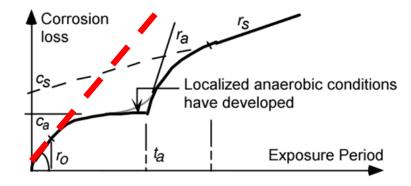


wrt Corrosion Rates?

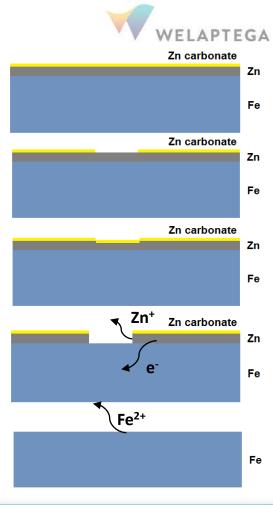
- Water Temperature?
 - Pretty typical of other environments without low corrosion rates
- Dissolved Oxygen?
 - Any evidence of this being higher than typical levels at similar water depths?
- Microbiological Corrosion?
 - High nutrient levels from agricultural run-off could be a factor
 - More typical of warm water environments; Aerobic corrosion layer must build up to create anaerobic environment

Water Flow Rate

- Phase 1 corrosion rate increases dramatically with flow rate
- Note: test shown only goes up to 0.45m/s
 - Peak Tidal current at Cape Sharp is 5.5m/s


Average water temperature of 20-deg C; higher than Bay of Fundy, but relationship between flow rate and corrosion rate remains the same.

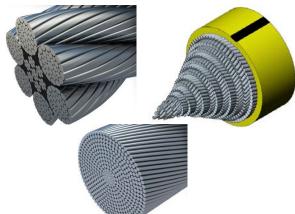
Robert E. Melchers Corrosion of working chains continuously immersed in seawater


Possible Cause

- High flow rate is leads to high initial corrosion rate, and
- Oxide layer needed to slow the corrosion rate does not establish due to abrasion:
 - Between mooring components,
 - Between components and seabed,
 - Abrasion due to entrained sand in flow?
- Components continually remaining in the Phase 1 high aerobic corrosion phase

What about Galvanizing?

- In sea water, galvanized surfaces form zinc carbonate and calcareous deposits to form a barrier to corrosion
- The zinc carbonate barrier is self repairing; if damaged, new zinc will be consumed to repair the barrier
- However, if the barrier is continually damaged, zinc will be consumed quickly
- If all zinc steel surface is exposed, zinc is further consumed due to creating of a galvanic corrosion cell
- Contributing factors lowering performance of galvanizing:
 - Mechanical damage to barrier wear between components
 - Water temperature
 - Flow rate/abrasion
 - Removes passive scales and causes further zinc consumption


American Galvanizers Association

Galvanizing

- In oil and gas industry:
 - MOORING CHAINS and SHACKLES are never galvanized
 - Steel grades used for O&G platforms are higher strength than typical marine grade; require heat treatment
 - Galvanizing process requires high heat; would reduce material properties
 - Chains designed with corrosion allowances instead
 - WIRE ROPE MOORINGS are always galvanized
 - 6-strand wire or
 - Torque-balanced spiral strand (sheathed or unsheathed)
 - Not typically used in areas of high wear for long periods of time


Power Cable Failure

- Outer armour wires formed into sharp points and lead to failure
 - Cables are not buried (sediment has been washed away in high flow)
 - Cable laid on hard rock seabed, but failure mode is unrelated to the cable wearing from movement on the seabed itself
 - Armour wires are always shiny/bright
 - Cables exhibiting this deterioration were move to areas of lesser current

Wire Rope Corrosion

- Drilling rig wire rope after 7 years in the North Sea
- Aside from corrosion, strands appear in otherwise good condition
 - Zinc is fully consumed; steel stands freely corroding
- Wire wet sand-blasted to inspect further

Degradation of wire rope mooring lines in SE Asian waters; Chaplin, Potts, Curtis

Wire Rope Corrosion

- Once the zinc is consumed, the bare wires freely corrode where zinc carbonate layer is damaged
- Corrosion is accelerated on the side of the wires in close proximity to adjacent strands
- Small movements between strands will disturb and wear away at the corrosion layer, causing further corrosion to the side of strands
- Crown of wires are not abraded and still protected by zinc-carbonate deposits
- The strands eventually appear rectangular or fin-like, forming sharp points

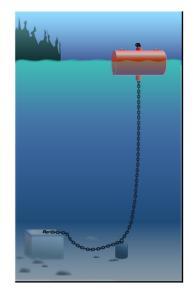
Power Cable – Moving to area of lesser current solved problem

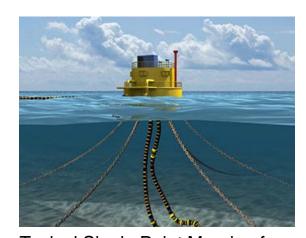
- Lower current area will improve performance of galvanizing layer and decrease the steel corrosion rate if zinc is eventually fully consumed
- Note Armour wires in failed power cables said to have looked bright/shiny
 - Photo of wire rope (right) has been wet sand-blasted
 - Possible the entrained sand in high flow environment removes corrosion products, contributing to high corrosion rate

Possible Solutions

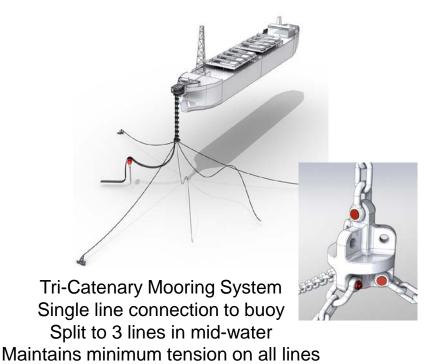
Assuming moorings and power cables cannot be moved to lower-flow areas, consider:

- Reducing motion between mooring components
- Better coatings or design with high corrosion/wear allowance
- Corrosion resistant or non-corroding materials





Possible Solutions to mooring failure


Reduce motion between mooring components to reduce wear

Single line Low pretension High relative motion

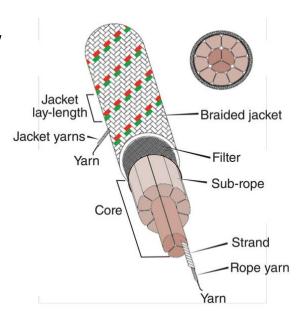
Typical Single Point Mooring for O&G industry
6 Lines; each line pretensioned to limit lines slackening and relative motion

Possible Solutions to mooring failure

Coatings or high corrosion/wear allowances

- Coatings for Chain, Steel Connectors
 - TSA Thermal Sprayed Aluminum
 - Similar to galvanizing, but provides better protection in marine environments
 - Aluminum provides anodic protection if surface coating is damaged
 - Low heat process suitable for high strength steels
 - TSC Thermal Sprayed Carbide
 - Resistant to wear, even at the contact zone between chain links
 - More details needed of how these coatings perform, especially in highflow environments
- Add a corrosion/wear allowance to the required chain size
 - Use recovered components to estimate corrosion/wear rate
 - Increased weight of chain may be problematic
 - If wear flats reduce rolling between links, bending loads increase

Vicinay Cadenas


Det Norske Veritas

Possible Solutions to mooring failure

Use corrosion resistant or non-corroding materials

- Stainless steel commonly used in fish farms with high-flow
- Fibre ropes have very good track record in O&G industry
 - Polyester, Aramid, High-modulus Polyethylene (HMPE)
 - (near) Neutral weight in water
 - Low abrasion resistance for use in water column only
 - Fibre rope can becomes damaged if sand gets into rope fibres
 - Unknown how sand filters will perform in high flow like Minas Basin, but commonly used in Gulf of Mexico where loop currents can reach 1.8-2m/s

Possible Solutions to cable failure

External coatings – eliminate water getting to armour strands

- Plastic sheathing
 - May get damaged from abrasion on hard seabed
- Grease or blocking compound on armour wires, with or without additional plastic sheathing
 - Most effective in cold water (warm water lowers the viscosity)

CONTACT

Visit Our Website at WWW.WELAPTEGA.COM

Email: info@welaptega.com

Tel: +1 902 422 8303